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Propagation failure in discrete bistable reaction-diffusion systems: Theory and experiments
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Wave front propagation failure is investigated in discrete bistable reaction-diffusion systems. We present a
theoretical approach including dissipative effects and leading to an analytical expression of the critical cou-
pling beyond which front propagation can occur as a function of the nonlinearity threshold parameter. Our
theoretical predictions are confirmed by numerical simulations and experimental results on an equivalent
electrical diffusive lattice.
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I. INTRODUCTION

In recent decades, nonlinear wave propagation in stron
dissipative or reaction-diffusion systems has attracted c
siderable attention. Indeed, reaction-diffusion equations a
in many areas of physics, biology, chemistry, and ecolo
@1,2#. The flame of a candle, a nerve impulse, spiral wave
excitable chemical reagents, as well as cell or animal po
lation dynamics, to cite but a few, are examples of nonlin
diffusion. Furthermore, as many reaction-diffusion syste
of biological origin, for example, in neuro-@3,4# and cardio-
physiology @5,6#, are intrinsically discrete, it has becom
clear that continuous reaction-diffusion equations provide
inadequate description of the behavior of these syste
where the interplay between nonlinearity and spatial d
creteness can lead to effects not present in continuum m
els. Among these effects is the important phenomenon
wave propagation failure, shared by most diffusively
coupled systems of excitable cells~there exist also particula
cases of nonlinear diffusive lattices that do not exhibit t
phenomenon@7,8#!. As propagation failure may lead, in th
context of neuro- and cardiophysiology, to the breakdown
the systems with potentially fatal consequences, it has b
the subject of numerous studies@5,6,9–14#. In particular, it
has been observed that there exists a nonzero critical valu
the intercellular coupling strength under which wave fro
fail to propagate. In order to gain understanding of this c
cial phenomenon, it is necessary to determine this crit
coupling strength analytically.

As a model, we consider the usual dimensionless disc
version of the Nagumo equation@15#

dun

dt
5D@un111un2122un#1 f ~un!, ~1!

whereun is the state of thenth lattice site,D the coupling
strength, andf (un) a bistable nonlinear function of the form
f (un)52un(un2a)(un21).

The main goal of this paper is to present a theoret
approach leading to an analytical expression of the crit
coupling Dc(a) beyond which front propagation can occu
Contrary to previous theoretical studies@16–19# in which the

*Electronic address: marquie@u-bourgogne.fr
1063-651X/2001/64~2!/027102~4!/$20.00 64 0271
ly
n-
se
y
in
u-
r
s

n
s,
-
d-
of

s

f
en

of
s
-

al

te

l
l

stationary case of Eq.~1! (dun /dt50) was considered, ou
method, presented in Sec. II, includes dissipative effects,
pressed by the termdun /dt. Our theoretical predictions ar
confirmed by numerical simulations~Sec. III! and experi-
mental results on an equivalent electrical diffusive latt
~Sec. IV!. Finally, Sec. V concludes the paper.

II. THEORETICAL STUDY

From a physical point of view, Eq.~1! can also model an
overdampedchain of harmonically coupled particles lying i
a double well on site potentialU(un), with f (un)
52dU(un)/dun . We propose to determine the minimu
coupling strengthDc(a) over which the boundary and initia
conditions

u151 ~ t>0!,

u2,a ~ t50!, ~2!

un50 ~3<n<N and t50!

will give rise to a traveling kinklike wave joining the two
statesu50 and 1, corresponding to the minima of the pote
tial U(un). Here, as in@19#, we consider that only the fron
site n52 experiences nonlinearity, while the other sitesn
.2) are close enough tou50 to be in the linear regime
~Fig. 1!. For a traveling wave to be initiated, let us point o
that it is necessary for the front siten52 to pass the energy
barrier ~with maximum heightDV! in u5a separating the
two potential minima, in spite of the loss mechanism.
deed, as is well known, climbing a hill against the win
requires more effort and more time than without any win
although the distance to be covered remains constant. T
and it is of crucial importance in our investigation, as w
consider an overdamped system, the dissipation effects
pressed by the termdun /dt have to be taken into account i
the determination of the critical coupling.

One might wonder then how to include these dissipat
effects in the problem. The answer ensues from the follow
remarks. Using boundary and initial conditions~2! in Eq. ~1!
and settingu25v leads to the evolution equation of the si
n52,
©2001 The American Physical Society02-1
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dv
dt

5D@122v#2v~v2a!~v21!. ~3!

In the particular case where all the cells are uncoupledD
50), Eq. ~3! reduces to

dv
dt

52v31v2~11a!2av. ~4!

This equation means that in the no coupling limit the dis
pative effects (dv/dt) are exactly balanced by the nonline
cubic functionf (u5v)52v31v2(11a)2av. Now, if we
introduce a progressively increasing couplingD ~with D
!1!, the friction force will be only slightly modified, com
pared to the no coupling case. This leads us to suppose,
that the friction force can still be expressed by a cubic po
nomial of the formP(u)5au31bu21gu. Furthermore, as
we consider in this study small values of the coupling~the
propagation failure occurring for a small but nonzero va
of the coupling,Dc!1! the structure of the friction force
will be conserved foruP@0;1# by choosinga521 in
P(u). Under these conditions, Eq.~3! becomes

D@122v#52Av21Bv, ~5!

with A511a2b andB5a1g. The right-hand side of Eq
~5! can be viewed as a force including both the initial cub
function f (u) and the friction force, and deriving from a ne
potentialG(u). This potential must present foruP@0;1# the
same minimum atu50, maximum atu5a, and maximum
barrier heightDV as the initial potentialU ~as represented in
Fig. 2!. Indeed, as stated before, the influence of dissipa

FIG. 1. Schematic representation of the boundary and in
conditions loaded in the chain, with the corresponding bistable
tential. To initiate front propagation, lattice siten52 (u2) has to
pass the energy barrier atu5a ~with maximum heightDV! sepa-
rating the two potential minima atu50 and 1.
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effects does not change the fact that, starting from any in
condition u5vP@0;a#, the front siten52 has to pass the
energy barrier~with maximum heightDV! at u5a to initiate
front propagation. Then the parametersA and B in Eq. ~5!
can be obtained easily, which leads to

D@122v#52~12a/2!~v2a!v. ~6!

This second degree equation expresses the exact balanc
tween the force resulting from the coupling~left-hand side
term! and the force resulting from the new on-site potent
including dissipative effects~right-hand side!, which corre-
sponds to the propagation failure limit. In fact, the front s
n52 would pass the barrier if the coupling strength w
greater than the on-site nonlinearity. Thus Eq.~6! admits a
unique solution if its discriminantD(D)50, which leads to
the analytical expression of the critical coupling

Dc~a!5~a22!@a211A122a#/4. ~7!

III. NUMERICAL RESULTS

The theoretical expression~7! has been compared with th
results of numerical simulations on a 200 cell lattice, us
a fourth order Runge-Kutta method with a time st
dt50.01. As presented in Fig. 3, our results~dashed linea!
are in perfect agreement with numerical results~L!. Let
us emphasize that our analytical expressionDc(a) is valid
in the whole rangeaP@0;0.5#, contrary to previous
estimations of this critical coupling strength. In particula
Keener @16# and Erneux and Nicolis @17# showed,
respectively, that the critical value ofD below which
propagation failure occurs is related to the nonlinear
parametera by Dc5a2/4, but only in the casea!1 ~curvec
in Fig. 3!. On the other hand, Keener@16# also proposed an
estimate of Dc above which propagation was assur

Dc5@2a22a1222(a11)Aa223a11#/25, but restricted
to a<0.382~curveb in Fig. 3!. Nevertheless, if we conside

l
-

FIG. 2. Initial bistable potentialU(u) ~dashed line! and new
potentialG(u) including dissipative effects~continuous line!. The
two potentials share the same maximum barrier heightDV between
u50 anda.
2-2
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a!1 in Eq. ~7!, our results agree with previous ones, sin
we also obtainDc(a).a2/4.

IV. EXPERIMENTAL RESULTS

Let us finally present an experimental determination
the critical couplingDc,expt(a) inducing propagation failure
using a nonlinear diffusive electrical lattice@20#. The lattice
consists ofN548 elementary cells, resistively coupled b
linear adjustable resistorsr and containing a nonlinear resis
tor RNL in parallel with a linear capacitorC ~see Fig. 4!. The
nonlinear resistorRNL presents a cubic type current-voltag
characteristic of the form

I ~U !5U~U2a!~U2b!/l, ~8!

with l5R0ab,R0 being a weighting resistor. From th
Kirchhoff laws, and settingd5R0 /r andt5t/C, we derive,
for 2<n<N21, the set of discrete equations of Fisher@21#
or Nagumo without a recovery term, introduced for simul
ing genetic diffusion and information propagation alo
nerve axons,

dUn

dt
5d@Un111Un2122Un#2

Un

ab
~Un2a!~Un2b!.

~9!

The description of the system is completed by assum
zero-flux or Neumann boundary conditions~for n51 andN!.

FIG. 3. Curves of the critical coupling inducing propagati
failure. Our theoretical predictions~dashed linea! are compared
with numerical simulations results~L! and experimental measure
~1!. Previous analytical results@16,17# are also presented~continu-
ous linesb andc!.
o
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For each value of the parametera5a/b, all the coupling
resistorsr are adjusted to their maximum valuer max ~the
very small coupling case! in order to be in the propagatio
failure regime. Then these resistors are decreased sim
neously ~the coupling is then increased! until the critical
valuer c is reached that induces a propagative front from
Heaviside-type initial condition loaded in the lattice. Afte
normalization, our experimental results, presented in Fig
with their uncertainty domains~1 signs!, are qualitatively in
good agreement with both our theoretical predictions a
numerical simulation results even if there exists a slight d
crepancy. This is probably due to the fact that the curre
voltage characteristic of the nonlinear resistors does not h
exactly a cubic shape, as the parametera/b5a is modified.

V. CONCLUSION

In summary, we have presented a method allowing ch
acterization of the propagation failure phenomenon in d
crete bistable reaction-diffusion systems. This approach
cluding dissipative effects leads to a general analyti
relation between the critical coupling strength beyond wh
front propagation can occur and the barrier parameter
threshold of the bistable potential. Considering the exam
of the discrete Nagumo equation, our predictions were c
firmed by numerical simulations and experimental results
a nonlinear diffusive electrical lattice. Let us point out final
that our method is of general interest since it could be
plied to discrete systems with bistable behavior includ
both inertia and dissipation. We believe then that our meth
can allow a better understanding of physical, biophysical
chemical real phenomena, in particular, in the contexts
neuro- and cardiophysiology. Indeed, since realistic mod
are rather complicated, it is important, using simple latt
models, to describe the real phenomena involved with fa
good accuracy.

FIG. 4. Schematic representation of the nonlinear diffusive e
trical lattice. All theN548 elementary cells are resistively couple
by linear adjustable resistorsr and contain a nonlinear resistorRNL

in parallel with a linear capacitorC.
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Plank, I. Schafferhofer, V. Pe´rez-Muñuzuri, and V. Pe´rez-
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