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Propagation failure in discrete bistable reaction-diffusion systems: Theory and experiments
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Wave front propagation failure is investigated in discrete bistable reaction-diffusion systems. We present a
theoretical approach including dissipative effects and leading to an analytical expression of the critical cou-
pling beyond which front propagation can occur as a function of the nonlinearity threshold parameter. Our
theoretical predictions are confirmed by numerical simulations and experimental results on an equivalent
electrical diffusive lattice.
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[. INTRODUCTION stationary case of Eql) (du,/dt=0) was considered, our
method, presented in Sec. Il, includes dissipative effects, ex-
In recent decades, nonlinear wave propagation in stronglpressed by the terrdu,/dt. Our theoretical predictions are
dissipative or reaction-diffusion systems has attracted conconfirmed by numerical simulationSec. Il) and experi-
siderable attention. Indeed, reaction-diffusion equations arismental results on an equivalent electrical diffusive lattice
in many areas of physics, biology, chemistry, and ecologySec. I\). Finally, Sec. V concludes the paper.
[1,2]. The flame of a candle, a nerve impulse, spiral waves in
excitable chemical reagents, as well as cell or animal popu-
lation dynamics, to cite but a few, are examples of nonlinear

diffusion. Furthermore, as many reaction-diffusion systems From a physical point of view, Eq1) can also model an
of biological origin, for example, in neur¢3,4] and cardio-  overdampedthain of harmonically coupled particles lying in
physiology [5,6], are intrinsically discrete, it has become 3 double well on site potentialU(u,), with f(u,)
clear that continuous reaction-diffusion equations provide an- —qy(u,)/du,. We propose to determine the minimum
inadequate description of the behavior of these systemggypling strengttD(a) over which the boundary and initial
where the interplay between nonlinearity and spatial diSyonditions
creteness can lead to effects not present in continuum mod-

els. Among these effects is the important phenomenon of

wave propagation failure shared by most diffusively

coupled systems of excitable ceftbere exist also particular

cases of nonlinear diffusive lattices that do not exhibit this u,<a (t=0), 2
phenomenon7,8]). As propagation failure may lead, in the
context of neuro- and cardiophysiology, to the breakdown of
the systems with potentially fatal consequences, it has been
the subject of numerous studifs,6,9—-14. In particular, it

has been observed that there exists a nonzero critical value wiill give rise to a traveling kinklike wave joining the two
the intercellular coupling strength under which wave frontsstatesu=0 and 1, corresponding to the minima of the poten-
fail to propagate. In order to gain understanding of this cru+ial U(u,). Here, as if19], we consider that only the front
cial phenomenon, it is necessary to determine this criticasite n=2 experiences nonlinearity, while the other sites (

Il. THEORETICAL STUDY

u;=1 (t=0),

u,=0 (3=n=N andt=0)

coupling strength analytically. >2) are close enough to=0 to be in the linear regime

As a model, we consider the usual dimensionless discret@Fig. 1). For a traveling wave to be initiated, let us point out
version of the Nagumo equatiga5] that it is necessary for the front site=2 to pass the energy
q barrier (with maximum heightAV) in u=a separating the

Uy . two potential minima, in spite of the loss mechanism. In-

gt~ PlUnsatUn_g=2Un]+1(Un), @ deed, as is well known, climbing a hill against the wind

requires more effort and more time than without any wind,
whereu, is the state of thenth lattice site,D the coupling although the distance to be covered remains constant. Thus,
strength, and (u,,) a bistable nonlinear function of the form and it is of crucial importance in our investigation, as we
f(up)=—un(u,—a)(u,—1). consider an overdamped system, the dissipation effects ex-

The main goal of this paper is to present a theoreticapressed by the termiu,/dt have to be taken into account in

approach leading to an analytical expression of the criticathe determination of the critical coupling.
couplingD.(a) beyond which front propagation can occur.  One might wonder then how to include these dissipative
Contrary to previous theoretical studid6—19 in which the  effects in the problem. The answer ensues from the following

remarks. Using boundary and initial conditio{® in Eq. (1)

and settingu,=v leads to the evolution equation of the site
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FIG. 2. Initial bistable potential(u) (dashed ling and new
potentialG(u) including dissipative effectécontinuous ling The
two potentials share the same maximum barrier helghtbetween

u u=0 anda.
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FIG. 1. Schematic representation of the boundary and initiaff€CtS does not change the fact that, starting from any initial
conditions loaded in the chain, with the corresponding bistable poconditionu=v [0;a], the front siten=2 has to pass the
tential. To initiate front propagation, lattice site=2 (u,) has to  €nergy barrietwith maximum heighiA V) atu=a to initiate
pass the energy barrier at=a (with maximum heightAV) sepa-  front propagation. Then the parametéysand B in Eq. (5)

rating the two potential minima at=0 and 1. can be obtained easily, which leads to
do D[1-2v]=—(1-al2)(v—a)v. (6)
—=D[1-2v]-v(v—a)(v—1). 3 ] ]
dt This second degree equation expresses the exact balance be-

. tween the force resulting from the coupliriigft-hand side

In the particular case where all the cells are uncoupd ( term) and the force resulting from the new on-site potential

=0), Eq.(3) reduces to including dissipative effectgright-hand sidg which corre-
dv sponds to the propagation failure limit. In fact, the front site
—=—p3+v?(1+a)—av. (4) n=2 would pass the barrier if the coupling strength was
dt greater than the on-site nonlinearity. Thus Eg). admits a

_unique solution if its discriminanA (D) =0, which leads to

the analytical expression of the critical coupling

D.(a)=(a—2)[a—1+1—2a]/4. (7

This equation means that in the no coupling limit the dissi
pative effects v/dt) are exactly balanced by the nonlinear
cubic functionf(u=v)=—v3+v?(1+a)—av. Now, if we
introduce a progressively increasing couplibg (with D
<1), the friction force will be only slightly modified, com-
pared to the no coupling case. This leads us to suppose, first, . NUMERICAL RESULTS
that the friction force can still be expressed by a cubic poly-
nomial of the formP(u) = au®+ Bu?+ yu. Furthermore, as
we consider in this study small values of the couplitige
propagation failure occurring for a small but nonzero valu
of the coupling,D.<1) the structure of the friction force
will be conserved forue[0;1] by choosinga=-—1 in
P(u). Under these conditions, E¢3) becomes

The theoretical expressidid) has been compared with the
results of numerical simulations on a 200 cell lattice, using
a fourth order Runge-Kutta method with a time step
€dt=0.01. As presented in Fig. 3, our resultiashed linen)
are in perfect agreement with numerical results). Let
us emphasize that our analytical expresdiyfa) is valid
in the whole rangeae[0;0.5, contrary to previous
_ — _ A2 estimations of this critical coupling strength. In particular,
D[1-2v] Av™+Bo, © Keener [16] and Erneux and Nicolis[17] showed,
with A=1+a— 8 andB=a+ y. The right-hand side of Eq. respectively, that the critical value ob below which
(5) can be viewed as a force including both the initial cubicPropagation failure occurs is related to the nonlinearity
function f(u) and the friction force, and deriving from a new Parameter by D.=a?/4, but only in the casa<1 (curvec
potentialG(u). This potential must present fore [0;1] the i Fig. 3. On the other hand, Keengt6] also proposed an
same minimum ati=0, maximum atu=a, and maximum €stimate of D, above which propagation was assured
barrier heightAV as the initial potential (as represented in D.=[2a’—a+2—2(a+1)\a?—3a+1]/25, but restricted
Fig. 2. Indeed, as stated before, the influence of dissipativéo a<0.382(curveb in Fig. 3). Nevertheless, if we consider
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a For each value of the parameter o/, all the coupling
resistorsr are adjusted to their maximum valug,,, (the
FIG. 3. Curves of the critical coupling inducing propagation yvery small coupling cagen order to be in the propagation
failure. Our theoretical prediction&lashed linea) are compared 5jjure regime. Then these resistors are decreased simulta-
with numerical simulations resul{s>) and experimental measures neously (the coupling is then increasgdintil the critical
(+). Previous analytical resul{d6,17 are also presente@ontinu-  y4)yer _ is reached that induces a propagative front from the
ous linesb andc). Heaviside-type initial condition loaded in the lattice. After
: : . . normalization, our experimental results, presented in Fig. 3
a<1 in Eq. (.7)’ our reS‘z"ts agree with previous ones, SINCith their uncertainty domaingt signg, are qualitatively in
we also obtairD(a) ~a“/4. good agreement with both our theoretical predictions and
numerical simulation results even if there exists a slight dis-
IV. EXPERIMENTAL RESULTS crepancy. This is probably due to the fact that the current-
Let us finally present an experimental determination ofvoltage chara_cteristic of the nonlinear resistors doesf pot have
the critical couplingD . ex(@) inducing propagation failure, exactly a cubic shape, as the parametgB=a is modified.
using a nonlinear diffusive electrical latti€20]. The lattice
consists ofN=48 elementary cells, resistively coupled by V. CONCLUSION
linear adjustable resistorsand containing a nonlinear resis-
tor Ry, in parallel with a linear capacitdt (see Fig. 4 The In summary, we have presented a method allowing char-

nonlinear resistoRy, presents a cubic type current-voltage acterization of the propagation failure phenomenon in dis-
characteristic of the form crete bistable reaction-diffusion systems. This approach in-

cluding dissipative effects leads to a general analytical

[(U)=U(U—-a)(U—-B)I\, (8)  relation between the critical coupling strength beyond which

front propagation can occur and the barrier parameter or

with A=RyaB,Ry being a weighting resistor. From the threshold of the bistable potential. Considering the example

Kirchhoff laws, and settingl=R,/r andr=t/C, we derive, of the discrete Nagumo equation, our predictions were con-

for 2<n=<N-—1, the set of discrete equations of Fish2t]  firmed by numerical simulations and experimental results on
or Nagumo without a recovery term, introduced for simulat-a nonlinear diffusive electrical lattice. Let us point out finally

ing genetic diffusion and information propagation alongthat our method is of general interest since it could be ap-
nerve axons, plied to discrete systems with bistable behavior including

both inertia and dissipation. We believe then that our method

du, n can allow a better understanding of physical, biophysical, or

g, ~dlUnsat Un—1—2Un]—E(Un—a)(Un—ﬂ)- chemical real phenomena, in particular, in the contexts of

(9) neuro- and cardiophysiology. Indeed, since realistic models

are rather complicated, it is important, using simple lattice

The description of the system is completed by assumingnodels, to describe the real phenomena involved with fairly

zero-flux or Neumann boundary conditiofisr n=1 andN). good accuracy.
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